你知道开平方有七种算法么?


sqrt()函数,是绝大部分语言支持的常用函数,它实现的是开方运算;开方运算最早是在我国魏晋时数学家刘徽所著的《九章算术》被提及。今天写了几个函数加上国外大神的几个神级程序带大家领略sqrt的神奇之处。

【古人算法】

    原理:从0开始0.00001,000002...一个一个试,直到找到x的平方根,代码如下:

public class APIsqrt {
    static double baoliSqrt(double x) {
        final double _JINGDU = 1e-6;
        double i;
        for (i = 0; Math.abs(x - i * i) > _JINGDU; i += _JINGDU)
            ;
        return i;
    }
    public static void main(String[] args) {
        double x = 3;
        double root = baoliSqrt(x);
        System.out.println(root);
    }
}

测试结果:

    1.7320509999476947


【牛顿迭代法】

    计算机科班出身的童鞋可能首先会想到的是《数值分析》中的牛顿迭代法求平方根。

    原理是:随意选一个数比如说8,要求根号3,我们可以这么算:

        (8 + 3/8) = 4.1875

        (4.1875 + 3/4.1875) = 2.4519

        (2.4519 + 3/2.4519) = 1.837

        (1.837 + 3/1.837) = 1.735

    做了4步基本算出了近似值了,这种迭代的方式就是传说中的牛顿迭代法了,代码如下:

public class APIsqrt {
    static double newtonSqrt(double x) {
        if (x < 0) {
            System.out.println("负数没事开什么方");
            return -1;
        }
        if (x == 0)
            return 0;
        double _avg = x;
        double last_avg = Double.MAX_VALUE;
        final double _JINGDU = 1e-6;
        while (Math.abs(_avg - last_avg) > _JINGDU) {
            last_avg = _avg;
            _avg = (_avg + x / _avg) / 2;
        }
        return _avg;
    }
    public static void main(String[] args) {
        double x = 3;
        double root = newtonSqrt(x);
        System.out.println(root);
    }
}

测试结果:

    1.7320508075688772


【暴力-牛顿综合法】

    原理:还是以根号3为例,先用暴力法讲根号3逼近到1.7,然后再利用上述的牛顿迭代法。虽然没有用牛顿迭代好,但是也为我们提供一种思路。代码如下:

public class APIsqrt {
 	static double baoliAndNewTonSqrt(double x) {
		if (x < 0) {
			System.out.println("负数没事开什么方");
			return -1;
		}
		if (x == 0)
			return 0;
 
		double i = 0;
		double _avg;
		double last_avg = Double.MAX_VALUE;
		for (i = 0; i*i < x; i += 0.1);
		_avg = i;
		final double _JINGDU = 1e-6;
 
		while (Math.abs(_avg - last_avg) > _JINGDU) {
			last_avg = _avg;
			_avg = (_avg + x / _avg) / 2;
		}
		return _avg;
	}
	public static void main(String[] args) {
		double x = 3;
		double root = baoliAndNewTonSqrt(x);
		System.out.println(root);
	}
}

测试结果:

    1.7320508075689423


【二分开方法】

    原理:还是以3举例:

        (0+3)/2 = 1.5, 1.5^2 = 2.25, 2.25 < 3;

        (1.5+3)/2 = 2.25, 2.25^2 = 5.0625, 5.0625 > 3;

        (1.5+2.25)/2 = 1.875, 1.875^2 = 3.515625; 3.515625>3;

    直到前后两次平均值只差小于自定义精度为止,代码如下:

public class APIsqrt {
	static double erfenSqrt(double x) {
		if (x < 0) {
			System.out.println("负数没事开什么方");
			return -1;
		}
		if (x == 0)
			return 0;
 
		final double _JINGDU = 1e-6;
		double _low = 0;
		double _high = x;
		double _mid = Double.MAX_VALUE;
		double last_mid = Double.MIN_VALUE;
		while (Math.abs(_mid - last_mid) > _JINGDU) {
			last_mid = _mid;
			_mid = (_low + _high) / 2;
			if (_mid * _mid > x)
				_high = _mid;
			if (_mid * _mid < x)
				_low = _mid;
		}
		return _mid;
	}
	public static void main(String[] args) {
		double x = 3;
		double root = erfenSqrt(x);
		System.out.println(root);
	}
}

测试结果:

    1.732051134109497


【计算 (int)(sqrt(x))算法】

    原理:空间换时间,细节请大家自行探究,代码如下:

public class APIsqrt2 {
	final static int[] table = { 0, 16, 22, 27, 32, 35, 39, 42, 45, 48, 50, 53,
			55, 57, 59, 61, 64, 65, 67, 69, 71, 73, 75, 76, 78, 80, 81, 83, 84,
			86, 87, 89, 90, 91, 93, 94, 96, 97, 98, 99, 101, 102, 103, 104,
			106, 107, 108, 109, 110, 112, 113, 114, 115, 116, 117, 118, 119,
			120, 121, 122, 123, 124, 125, 126, 128, 128, 129, 130, 131, 132,
			133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 144,
			145, 146, 147, 148, 149, 150, 150, 151, 152, 153, 154, 155, 155,
			156, 157, 158, 159, 160, 160, 161, 162, 163, 163, 164, 165, 166,
			167, 167, 168, 169, 170, 170, 171, 172, 173, 173, 174, 175, 176,
			176, 177, 178, 178, 179, 180, 181, 181, 182, 183, 183, 184, 185,
			185, 186, 187, 187, 188, 189, 189, 190, 191, 192, 192, 193, 193,
			194, 195, 195, 196, 197, 197, 198, 199, 199, 200, 201, 201, 202,
			203, 203, 204, 204, 205, 206, 206, 207, 208, 208, 209, 209, 210,
			211, 211, 212, 212, 213, 214, 214, 215, 215, 216, 217, 217, 218,
			218, 219, 219, 220, 221, 221, 222, 222, 223, 224, 224, 225, 225,
			226, 226, 227, 227, 228, 229, 229, 230, 230, 231, 231, 232, 232,
			233, 234, 234, 235, 235, 236, 236, 237, 237, 238, 238, 239, 240,
			240, 241, 241, 242, 242, 243, 243, 244, 244, 245, 245, 246, 246,
			247, 247, 248, 248, 249, 249, 250, 250, 251, 251, 252, 252, 253,
			253, 254, 254, 255 };
	/**
	 * A faster replacement for (int)(java.lang.Math.sqrt(x)). Completely
	 * accurate for x < 2147483648 (i.e. 2^31)...
	 */
	static int sqrt(int x) {
		int xn;
		if (x >= 0x10000) {
			if (x >= 0x1000000) {
				if (x >= 0x10000000) {
					if (x >= 0x40000000) {
						xn = table[x >> 24] << 8;
					} else {
						xn = table[x >> 22] << 7;
					}
				} else {
					if (x >= 0x4000000) {
						xn = table[x >> 20] << 6;
					} else {
						xn = table[x >> 18] << 5;
					}
				}
				xn = (xn + 1 + (x / xn)) >> 1;
				xn = (xn + 1 + (x / xn)) >> 1;
				return ((xn * xn) > x) ? --xn : xn;
			} else {
				if (x >= 0x100000) {
					if (x >= 0x400000) {
						xn = table[x >> 16] << 4;
					} else {
						xn = table[x >> 14] << 3;
					}
				} else {
					if (x >= 0x40000) {
						xn = table[x >> 12] << 2;
					} else {
						xn = table[x >> 10] << 1;
					}
				}
				xn = (xn + 1 + (x / xn)) >> 1;
				return ((xn * xn) > x) ? --xn : xn;
			}
		} else {
			if (x >= 0x100) {
				if (x >= 0x1000) {
					if (x >= 0x4000) {
						xn = (table[x >> 8]) + 1;
					} else {
						xn = (table[x >> 6] >> 1) + 1;
					}
				} else {
					if (x >= 0x400) {
						xn = (table[x >> 4] >> 2) + 1;
					} else {
						xn = (table[x >> 2] >> 3) + 1;
					}
				}
				return ((xn * xn) > x) ? --xn : xn;
			} else {
				if (x >= 0) {
					return table[x] >> 4;
				}
			}
		}
		return -1;
	}
	public static void main(String[] args){
		System.out.println(sqrt(65));
	}
}

测试结果:

    8


【sqrt算法】

这个算法很有名,大家可能也见过,作者是开发游戏的,图形算法中经常用到sqrt,作者才写了一个神级算法,和他那神秘的0x5f3759df,代码如下

#include <math.h>
float InvSqrt(float x)
{
 float xhalf = 0.5f*x;
 int i = *(int*)&x; // get bits for floating VALUE
 i = 0x5f375a86- (i>>1); // gives initial guess y0
 x = *(float*)&i; // convert bits BACK to float
 x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy
 return x;
}
int main()
{
  printf("%lf",1/InvSqrt(3));
 
   return 0;
}

测试结果:

    1.733565


【与sqrt相似但更快的算法】

#include <math.h>
float SquareRootFloat(float number) {
    long i;
    float x, y;
    const float f = 1.5F;
 
    x = number * 0.5F;
    y  = number;
    i  = * ( long * ) &y;
    i  = 0x5f3759df - ( i >> 1 );
    y  = * ( float * ) &i;
    y  = y * ( f - ( x * y * y ) );
    y  = y * ( f - ( x * y * y ) );
    return number * y;
}
 
int main()
{
  printf("%f",SquareRootFloat(3));
 
   return 0;
}

测试结果:

    1.732049

上一篇 下一篇

评论

登录后可发表评论


Wq:
04月08日 14:13
知我者谓我心忧

陈斯伟:
02月08日 23:37
头女魔头欧欧欧欧女童